Ứng dụng của in 3D trong Y tế - Phần 2 - Gia Công Cơ Khí Chính Xác - Đồ Gá - Jigs - Khuôn Mẫu - Phay CNC - Tiện CNC

Ứng dụng của in 3D trong Y tế - Phần 2


Phẫu thuật sử dụng phương pháp điều trị trọng tâm là in 3D có lịch sử bắt đầu vào giữa những năm 1990 với mô hình giải phẫu để lập kế hoạch phẫu thuật tái tạo xương. Bằng cách thực hành trên một mô hình thật trước khi phẫu thuật, bác sĩ phẫu thuật đã được chuẩn bị tốt hơn và bệnh nhân được chăm sóc tốt hơn. Cấy ghép cho bệnh nhân là một phần mở rộng tự nhiên của công nghệ này, cho phép việc cấy ghép được cá nhân hóa thực sự phù hợp với một cá nhân.

Lập kế hoạch ảo về phẫu thuật và hướng dẫn sử dụng công cụ in 3D được cá nhân hóa đã được áp dụng cho nhiều lĩnh vực phẫu thuật bao gồm thay thế toàn bộ và tái tạo xương sọ với thành công lớn. Nghiên cứu mới về việc sử dụng các mô hình để lập kế hoạch phẫu thuật tim và cơ quan rắn đã dẫn đến tăng việc sử dụng in 3D ở những lĩnh vực này. In 3D dựa trên bệnh viện hiện là mối quan tâm lớn và nhiều tổ chức theo đuổi việc bổ sung sản phẩm này trong các khoa X quang cá nhân.

Công nghệ này đang được sử dụng để tạo ra các thiết bị độc đáo, phù hợp với bệnh nhân cho các bệnh hiếm gặp. Một ví dụ về điều này là nẹp xương sống tự tiêu biến để điều trị trẻ sơ sinh mắc chứng nhuyễn khí phế quản được phát triển tại Đại học Michigan. Một số nhà sản xuất thiết bị cũng đã bắt đầu sử dụng in 3D để hướng dẫn phẫu thuật phù hợp với bệnh nhân (polyme). Việc sử dụng sản xuất đắp dần cho sản xuất hàng loạt trong cấy ghép chỉnh hình (kim loại) cũng đang tăng lên do khả năng tạo ra các cấu trúc bề mặt xốp có hiệu quả, tạo điều kiện cho quá trình thẩm thấu. Các vật đúc dùng cho gãy xương có thể được lắp đặt và mở tùy chỉnh, cho phép người đeo có thể gải ngứa, rửa và thông gió cho khu vực bị gãy. Chúng cũng có thể được tái chế.

Chế tạo bằng sợi in nóng chảy (FFF) đã được sử dụng để tạo ra các cấu trúc vi mô với các dạng hình học bên trong ba chiều. Cấu trúc đỡ hoặc vật liệu hỗ trợ bổ sung là không cần thiết. Cấu trúc sử dụng axit polylactic (PLA) có thể có độ rỗng hoàn toàn có thể kiểm soát trong khoảng 20% –60%. Những cấu trúc đỡ như vậy có thể đóng vai trò như các mẫu y sinh dùng trong nuôi cấy tế bào, hoặc cấy ghép phân hủy sinh học trong kỹ thuật mô.

In 3D hộp sọ người từ dữ liệu chụp cắt lớp máy tính
In 3D hộp sọ người từ dữ liệu chụp cắt lớp máy tính

In 3D đã được sử dụng để in cấy ghép cụ thể trên bệnh nhân và thiết bị y tế. Các hoạt động thành công bao gồm một khung xương chậu được cấy ghép vào một bệnh nhân người Anh, hàm dưới bằng titan được cấy ghép cho một bệnh nhân Hà Lan, và nẹp nách khí quản bằng nhựa cho trẻ sơ sinh người Mỹ. Các ngành công nghiệp trợ thính và nha khoa dự kiến sẽ là khu vực phát triển lớn nhất trong tương lai sử dụng công nghệ in 3D tùy biến. Vào tháng 3 năm 2014, các bác sĩ phẫu thuật ở Swansea đã sử dụng các bộ phận in 3D để xây dựng lại khuôn mặt của một người đi xe mô tô đã bị thương nặng trong một tai nạn giao thông. Nghiên cứu cũng đang được tiến hành trên phương pháp thay thế in sinh học cho mô bị mất do viêm khớp và ung thư.

Công nghệ in 3D hiện có thể được sử dụng để tạo bản sao chính xác của các cơ quan. Máy in sử dụng hình ảnh từ MRI hoặc CT của bệnh nhân làm mẫu và đặt các lớp cao su hoặc nhựa xuống.

In sinh học

Năm 2006, các nhà nghiên cứu tại Đại học Cornell đã xuất bản một số tác phẩm tiên phong trong in 3D để chế tạo mô, in thành công mực in sinh học hydrogel. Công trình tại Cornell đã được mở rộng bằng cách sử dụng các máy in sinh học chuyên dụng được sản xuất bởi Seraph Robotics, Inc., một đơn vị thuộc trường đại học, giúp xúc tiến một mối quan tâm toàn cầu trong nghiên cứu in 3D y sinh học.

In 3D đã được coi là một phương pháp cấy ghép tế bào gốc có khả năng tạo ra các mô và cơ quan mới cho con người. Với khả năng biến đổi thành bất kỳ loại tế bào nào khác trong cơ thể con người, tế bào gốc cung cấp tiềm năng to lớn trong in sinh học 3D. Giáo sư Leroy Cronin của Đại học Glasgow đã đề xuất trong một hội thảo TED 2012 rằng có thể sử dụng các loại mực hóa học để in thuốc.

Tính đến năm 2012,Công nghệ in 3D sinh học đã được nghiên cứu bởi các công ty công nghệ sinh học và học viện để sử dụng trong các ứng dụng kỹ thuật mô trong đó các bộ phận cơ thể và cơ thể được xây dựng bằng cách sử dụng các kỹ thuật in phun. Trong quá trình này, các lớp tế bào sống được lắng đọng vào một môi trường gel hoặc ma trận đường và được xây dựng từ từ để tạo thành các cấu trúc ba chiều bao gồm các hệ thống mạch máu. Hệ thống sản xuất mô in 3D đầu tiên được phân phối vào năm 2009, dựa trên công nghệ sinh học của NovoGen. Một số thuật ngữ đã được sử dụng để tham khảo lĩnh vực nghiên cứu này: in nội tạng, in sinh học, in phần thân, và kỹ thuật mô được hỗ trợ bởi máy tính,.... Khả năng sử dụng in mô 3D để tạo ra các kiến trúc mô mềm cho phẫu thuật tái tạo cũng đang được khám phá.

Năm 2013, các nhà khoa học Trung Quốc bắt đầu in tai, gan và thận, với mô sống. Các nhà nghiên cứu ở Trung Quốc đã có thể in thành công các cơ quan của con người bằng cách sử dụng các máy in sinh học 3D chuyên dụng sử dụng các tế bào sống thay vì nhựa. Các nhà nghiên cứu tại Đại học Hàng Châu Dianzi đã thiết kế "máy in sinh học 3D" được đặt tên là "Regenovo". Xu Mingen, nhà phát triển của Regenovo, nói rằng nó có thể sản xuất một mẫu mô gan hoặc sụn tai nhỏ trong vòng chưa đầy một giờ và dự đoán rằng các cơ quan in đầy đủ chức năng có thể mất từ 10 đến 20 năm để phát triển.

Các thiết bị y tế

Vào ngày 24 tháng 10 năm 2014, một bé gái năm tuổi sinh ra mà không có ngón tay hoàn chỉnh trên bàn tay trái của cô đã trở thành đứa trẻ đầu tiên ở Anh có tay giả được làm bằng công nghệ in 3D. Bàn tay của cô được thiết kế bởi E-nable có trụ sở tại Hoa Kỳ, một tổ chức thiết kế nguồn mở, sử dụng mạng lưới tình nguyện viên để thiết kế và làm bộ phận giả cho trẻ em. Bàn tay giả được dựa trên một khuôn thạch cao được thực hiện bởi cha mẹ cô. Một cậu bé tên là Alex cũng được sinh ra thiếu một cánh tay ngay phía trên khuỷu tay. Nhóm nghiên cứu đã có thể sử dụng in 3D để tải lên một cánh tay điện tử Myoelectric điện tử chạy bằng servo và pin được kích hoạt bởi cơ điện từ. Với việc sử dụng máy in 3D, E-NABLE cho đến nay đã phân phối hơn 400 tay nhựa cho trẻ em.

Bộ phận giả được in đã được sử dụng để phục hồi động vật bị tê liệt. Vào năm 2013, một chân in 3D cho phép đi bộ vịt con bị tê liệt một lần nữa. Vào năm 2014, một con chó chihuahua sinh ra không có chân trước được trang bị dây nịt và bánh xe được tạo bằng máy in 3D. Vỏ cua ẩn sĩ in 3D cho phép cua ẩn sĩ sống trong một ngôi nhà theo phong cách mới. Một mỏ giả là một công cụ được phát triển bằng cách sử dụng in 3D để giúp hỗ trợ một con đại bàng đầu trắng tên là Beauty, có mỏ bị cắt xén nghiêm trọng do bị bắn vào mặt. Kể từ năm 2014, cấy ghép đầu gối titan thương mại đã có trên thị trường với máy in 3D cho chó đã được sử dụng để khôi phục lại khả năng đi lại của động vật. Hơn 10.000 con chó ở châu Âu và Hoa Kỳ đã được điều trị chỉ sau một năm.

Vào tháng 2 năm 2015, FDA đã chấp thuận việc tiếp thị một bu lông phẫu thuật tạo điều kiện cho phẫu thuật bàn chân ít xâm lấn hơn và loại bỏ việc phải khoan qua xương. Các thiết bị in 3D, 'FastForward Bone Tether Plate' được chấp thuận để sử dụng trong phẫu thuật điều chỉnh để điều trị nốt viêm tấy ở kẽ ngón chân cái. Vào tháng 10 năm 2015, nhóm giáo sư Andreas Herrmann tại Đại học Groningen đã phát triển các loại nhựa có thể in 3D đầu tiên với các đặc tính kháng khuẩn. Sử dụng stereolithography, nhóm ammonium bậc bốn được kết hợp vào các thiết bị nha khoa để diệt vi khuẩn khi tiếp xúc. Đây là loại vật liệu có thể được áp dụng thêm trong các thiết bị y tế và cấy ghép.

Vào ngày 6 tháng 6 năm 2011, công ty Xilloc Medical cùng với các nhà nghiên cứu tạiĐại học Hasselt, Bỉ đã in thành công một xương hàm mới cho một phụ nữ Hà Lan 83 tuổi từ tỉnh Limburg.

In 3D đã được sử dụng để sản xuất mỏ giả cho đại bàng, một con ngỗng Brazil tên là Victoria, và một chim tucăng Costa Rica gọi là Grecia.

Thuốc

Viên thuốc đầu tiên được sản xuất bởi in 3D đã được FDA chấp thuận vào tháng 8 năm 2015. Chất kết dính vào một lớp bột của thuốc cho phép tạo ra các viên thuốc rất xốp, cho phép liều thuốc cao trong một viên thuốc hòa tan nhanh và có thể nuốt vào dễ dàng. Điều này đã được chứng minh cho Spritam, một sự cải cách của levetiracetam để điều trị chứng động kinh.
Ứng dụng của in 3D trong Y tế - Phần 2 Ứng dụng của in 3D trong Y tế - Phần 2 Reviewed by Gia Công Cơ Khí on 11/21/2018 03:39:00 CH Rating: 5

Không có nhận xét nào:

Được tạo bởi Blogger.